The effect of soft tissue properties on overall biomechanical response of a human lumbar motion segment: a preliminary finite element study

نویسنده

  • H. Cunningham
چکیده

This study investigates the relative effect of soft tissue properties on the overall response of a human spinal motion segment using an osseo-ligamentous FE model of the Visible Man L3-L4 intervertebral joint. Model geometry was obtained from the Visible Man CT dataset using custom built image processing software. Non-linear soft tissue properties were obtained from the literature. Displacement controlled simulations were performed in flexion, extension, lateral bending and axial rotation. The effect of each soft tissue structure (including the annular fibres) was assessed by removing it from the model and comparing the predicted overall stiffness to that of the intact segment. The results from this study showed that removal of the capsular ligaments and the collagen fibres in the annulus of the intervertebral disc have the largest effects on the overall stiffness of the motion segment. All other ligament structures had little impact on determining the motion response, with the exception of the anterior longitudinal ligament. Its removal caused the stiffness in extension to fall to 60 percent of the value reached for the intact model. It is concluded that correct representation of the mechanical properties of both the capsular ligament and annular fibres is most important in generating realistic FE models of the lumbar spine to predict motion segment biomechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

A Computational study on the effect of different design parameters on the accuracy of biopsy procedure

Needle insertion is a minimally invasive technique in diagnosing and treating tumors. However, to perform a surgery accurately, the tissue should have minimum amount of displacement during needle insertion so that it reaches the target tissue. Therefore, the tissue membrane has to move less to decrease rupturing under the membrane. In this study, the effect of different design parameters on dis...

متن کامل

Biomechanical study of lumbar spine with artificial disc replacement using three-dimensional finite element method

Biomechanical analyses on lumbar spine under compressive load and flexion torque were performed using a nonlinear three-dimensional finite element method to evaluate the stability of artificial disc replacement. We prepared a validated intact lumbar L4-L5 motion segment and artificial disc inserted motion segment by replacing intact disc with the artificial disc which is being developed. Effect...

متن کامل

A Finite Element Study of the effects of Vibrational Loading on the Fluid Flow Mechanism of the Intervertebral Disc

Low back pain is a clinical and public health problem affecting more than half of the population. Disc degeneration is a major source of low back pain. Long-term exposure to whole body vibration or sedentary work postures may have high association with disc degeneration. It is hypothesized that there is a preferential frequency for vibrational loading, which may increase the efficiency for flui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007